Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Int. arch. otorhinolaryngol. (Impr.) ; 23(2): 241-249, 2019. ilus, tab
Article in English | LILACS | ID: biblio-1015650

ABSTRACT

Introduction: The importance of our study lies in the fact that we have demonstrated the occurrence ofmechanical dysfunction within polypoid tissues, which promotes the development of polyps in the nasal cavity. Objective: To change the paradigm of nasal polyposis (NP). In this new conception, the chronic nasal inflammatory process that occurs in response to allergies, to pollution, to changes in the epithelial barrier, or to other factors is merely the trigger of the development of the disease in individuals with a genetic predisposition to an abnormal tissue remodeling process, which leads to a derangement of the mechanical properties of the nasal mucosa and, consequently, allows it to grow unchecked. Data: Synthesis We propose a fundamentally new approach to intervening in the pathological process of NP, addressing biomechanical properties, fluid dynamics, and the concept of surface tension. Conclusion: The incorporation of biomechanical knowledge into our understanding of NP provides a new perspective to help elucidate the physiology and the pathology of nasal polyps, and new avenues for the treatment and cure of NP (AU)


Subject(s)
Humans , Nasal Polyps/physiopathology , Nasal Polyps/pathology , Inflammation/physiopathology , Sinusitis/physiopathology , Biomechanical Phenomena , Brazil , Flow Mechanics , Chronic Disease , Edema/physiopathology , Extracellular Matrix/pathology , Hydrostatic Pressure , Nasal Mucosa/physiopathology , Nasal Mucosa/pathology
2.
Arq. bras. oftalmol ; 74(5): 348-351, set.-out. 2011. ilus
Article in English | LILACS | ID: lil-608407

ABSTRACT

PURPOSE: To determine if the corneal epithelium prevents the collagen cross-linking effect. Using immunofluorescence microscopy after CXL, we indirectly analyzed the role of the epithelium as ultraviolet-A (UVA) shield as well as a barrier to riboflavin penetration. METHODS: Fifteen freshly enucleated porcine eyes were divided into 3 groups. The corneal epithelium was kept intact in all groups. Five eyes served as control (Group 1). On group 2, eyes received tetracaine anesthetic drops and topical 0.1 percent riboflavin solution (10 mg riboflavin-5-phosphate in 10 mL 20 percent dextran-T-500). On Group 3, riboflavin was injected into the anterior chamber to allow penetration of the drug through the endothelium. Groups 2 and 3 were exposed to UVA (365 nm, 3 mW/cm²) for 30 minutes. Ultra-thin sections (8 µm) of the corneas were stained with anti-collagen type I and DAPI (4,6-diamidino-2-fenilindole dihydrocloride) and analyzed with fluorescence microscopy. RESULTS: Corneas treated with UVA irradiation and intracameral injection of riboflavin (Group 3) showed greater pattern of collagen organization compared to groups 1 (Control) and 2 (riboflavin and tetracaine eye drops). A yellow stromal staining, which represents the riboflavin diffusion into the stroma, was only observed in eyes injected with riboflavin into the anterior chamber. CONCLUSION: Using immunofluorescence microscopy in porcine corneas, we demonstrated that the corneal epithelium reduces the effectiveness of CXL by preventing the penetration of the drug and not by limiting the UVA transmittance. An inadequate intrastromal concentration of riboflavin may impair CXL effect.


OBJETIVO: Determinar se o epitélio corneano pode impedir ou diminuir o efeito do tratamento com "cross-linking" (CXL). Por meio de microscopia por imunofluorescência, foi indiretamente analisado o efeito do epitélio como escudo aos raios ultravioleta-A (UVA), assim como barreia à penetração da riboflavina. MÉTODOS: Quinze olhos enucleados de porcos foram divididos em 3 grupos. O epitélio corneano foi mantido intacto em todos os grupos. Cinco olhos serviram como controle (Grupo 1). No grupo 2, os olhos foram instilados com colírio anestésico de tetracaína, assim como colírio de riboflavina 0,1 por cento (10 mg de riboflavina-5-fosfato em 10 ml de dextran 20 por cento T-500). No grupo 3, solução de riboflavina foi injetada na câmara anterior para permitir a penetração da droga através do endotélio. Os grupos 2 e 3 foram então expostos à radiação UVA (365 nm, 3 mW/cm²) por 30 minutos. Subsequentemente, cortes ultrafinos (8 µm) das córneas foram marcados com anticolágeno tipo I e DAPI (4,6-diamidino-2-fenilindole dihydrocloride) e analisados com microscópio de imunofluorescência. RESULTADOS: As córneas que receberam injeção intracameral de riboflavina e foram irradiadas com UVA (Grupo 3) mostraram um padrão maior de organização das fibras de colágeno em relação aos grupos 1 (Controle) e 2 (instiladas com colírio anestésico e de riboflavina). Macroscopicamente, a coloração amarelada do estroma, que representa a difusão da riboflavina, foi apenas observada nos olhos que receberam riboflavina intracameral. CONCLUSÃO: Foi demonstrado, através de microscopia por imunofluorescência em córneas de porcos, que o epitélio corneano íntegro diminui a efetividade do CXL por reduzir a penetração da riboflavina, e não por impedir a penetração dos raios UVA. Uma concentração intraestromal inadequada de riboflavina limita o efeito do tratamento.


Subject(s)
Animals , Epithelium, Corneal/drug effects , Epithelium, Corneal/radiation effects , Photosensitizing Agents/pharmacokinetics , Riboflavin/pharmacokinetics , Cross-Linking Reagents , Collagen Type I/drug effects , Collagen Type I/radiation effects , Microscopy, Fluorescence , Swine , Ultraviolet Rays
3.
An. acad. bras. ciênc ; 81(3): 409-429, Sept. 2009. ilus, tab
Article in English | LILACS | ID: lil-523987

ABSTRACT

Heparan sulfate proteoglycans are ubiquitously found at the cell surface and extracellular matrix in all the animal species. This review will focus on the structural characteristics of the heparan sulfate proteoglycans related to protein interactions leading to cell signaling. The heparan sulfate chains due to their vast structural diversity are able to bind and interact with a wide variety of proteins, such as growth factors, chemokines, morphogens, extracellular matrix components, enzymes, among others. There is a specificity directing the interactions of heparan sulfates and target proteins, regarding both the fine structure of the polysaccharide chain as well precise protein motifs. Heparan sulfates play a role in cellular signaling either as receptor or co-receptor for different ligands, and the activation of downstream pathways is related to phosphorylation of different cytosolic proteins either directly or involving cytoskeleton interactions leading to gene regulation. The role of the heparan sulfate proteoglycans in cellular signaling and endocytic uptake pathways is also discussed.


Proteoglicanos de heparam sulfato são encontrados tanto superfície celular quanto na matriz extracelular em todas as espécies animais. Esta revisão tem enfoque nas características estruturais dos proteoglicanos de heparam sulfato e nas interações destes proteoglicanos com proteínas que levam à sinalização celular. As cadeias de heparam sulfato, devido a sua variedade estrutural, são capazes de se ligar e interagir com ampla gama de proteínas, como fatores de crescimento, quimiocinas, morfógenos, componentes da matriz extracelular, enzimas, entreoutros. Existe uma especificidade estrutural que direciona as interações dos heparam sulfatos e proteínas alvo. Esta especificidade está relacionada com a estrutura da cadeia do polissacarídeo e os motivos conservados da cadeia polipeptídica das proteínas envolvidas nesta interação. Os heparam sulfatos possuem papel na sinalização celular como receptores ou coreceptores para diferentes ligantes. Esta ligação dispara vias de sinalização celular levam à fosforilação de diversas proteínas citosólicas ou com ou sem interações diretas com o citoesqueleto, culminando na regulação gênica. O papel dos proteoglicanos de heparam sulfato na sinalização celular e vias de captação endocítica também são discutidas nesta revisão.


Subject(s)
Humans , Endocytosis/physiology , Extracellular Matrix Proteins/physiology , Heparan Sulfate Proteoglycans/physiology , Signal Transduction/physiology , Cell Adhesion/physiology , Heparan Sulfate Proteoglycans/chemistry , Protein Binding/physiology
4.
Rev. bras. hematol. hemoter ; 30(5): 398-405, set.-out. 2008.
Article in Portuguese | LILACS | ID: lil-512155

ABSTRACT

A matriz extracelular (MEC) é uma rede complexa composta por quatro grandes classes de macromoléculas: colágenos, proteoglicanos (PGs), glicosaminoglicanos (GAGs) e glicoproteínas adesivas. As interações entre as células e a MEC são cruciais para determinar os padrões de comportamento celular, tais como crescimento, morte, diferenciação e motilidade. A hematopoese é o sistema responsável pela produção das células sangüíneas. O controle da proliferação e diferenciação destas células é feito através da interação das células com o microambiente da medula óssea (matriz extracelular). A adesão de progenitores hematopoéticos a moléculas da MEC e a ativação das integrinas são modulados por uma variedade de citocinas e fatores de crescimento, e esta modulação parece ser o mecanismo de regulação que influencia a proliferação de células-tronco e progenitores hematopoéticos, migração transendotelial ou transestromal e homing. Tanto no processo de migração, homing e invasão tumoral, as células seguem os seguintes passos: 1 - Degradação da MEC por enzimas secretadas pelas células: metaloproteinases, colagenases, plasmina, catepsinas, glicosidases e heparanases; 2 - Locomoção das células na região da MEC previamente degradada pelas enzimas; 3 - Adesão das células via receptores específicos da superfície celular, que geralmente interagem com componentes da MEC. Nas doenças onco-hematológicas, a interação das células neoplásicas com a matriz extracelular também influencia na agressividade e prognóstico da doença.


The extracellular matrix (ECM) is a complex structure composed of collagens, proteoglycans, glycosaminoglycans and adhesive glycoproteins. Interactions between the cells and the ECM are crucial to determine cell behavior, such as growth, death, differentiation and motility. Hematopoiesis is the system responsible for the production of blood cells. The control of proliferation and differentiation of these cells is attained through the interaction of the cells with the bone marrow microenvironment. The adhesion of hematopoietic progenitors to ECM molecules and the integrin activation are modulated by a variety of cytokines and growth factors, and this modulation seems to be the mechanism of regulation that influences proliferation of hematopoietic cells, transendothelial/transstromal migration and homing. Both in the migration and homing process, and in tumoral invasion the cells undergo the following steps: 1 - Degradation of the ECM by enzymes, including metalloproteinase, collagenase, plasmin, cathepsin, glycosidase and heparanase, secreted by the cells; 2 - Cell migration through the region previously degraded by enzymes; and 3 - Cell adhesion to specific receptors located on the cellular surface, that generally interact with ECM components. In onco-hematologic diseases, the interaction of neoplastic cells with the extracellular matrix also influences aggressiveness and prognosis of the disease.


Subject(s)
Humans , Extracellular Matrix , Hematologic Diseases , Hematopoiesis , Medical Oncology
SELECTION OF CITATIONS
SEARCH DETAIL